
12 CROSSTALK The Journal of Defense Software Engineering November 1998

Developing quality software is
often considered elusive—it
is more difficult to confidently

know that you have developed good
software than it is to build good soft-
ware. In the physical sciences, the re-
verse is true—it is easier to measure the
degree of perfection than it is to achieve
perfection.

One reason why it is difficult to
measure software quality stems from the
many practical and theoretical deficien-
cies of software testing. For example,
consider that to be 99 percent confident
that a program has a probability of fail-
ure of less than one in 1 million, the
software must be tested over 5 million
times without observing a failure. Test-
ing 5 million times requires that you
have an oracle that is correct (an oracle is
a person who knows or a program that
knows what the correct software output
is for all of the 5 million test cases).
Rarely does a perfect oracle exist, and to
create 5 million test cases would be in-
tractable. And if you have the oracle and
the test cases, there remains the impos-
sible task of having to test using them.

Challenges such as these have made
many in the software community decide
that quality assessment of a software

product is impractical. In addition to the
traditional approach of assessing the
“goodness” of the software, this has led
to alternate approaches to software qual-
ity assessment. The two key competing
approaches are process maturity assess-
ment and accreditation of software pro-
fessionals. The remainder of this article
describes the pros and cons of these
three approaches to predicting the qual-
ity of software.

Accrediting Personnel
There are various ways to accredit, i.e.,
certify, personnel. The rigor with which
personnel are certified depends on the
criticality of the services that the person
offers.

Professional licensing examinations,
practical experience, and earned degrees
are a few ways in which professionals can
be accredited. For example, graduating
from law school says something about a
person’s ability to practice law. It says
less, however, than had the person also
passed the bar. If this were not true,
there would be no need for state bar
examinations.

The intuition behind certifying
“people skills” is simple; it should not be
left up to the untrained consumer to be
responsible to determine whether a can-
didate is qualified to perform the desired
services. For example, how can Joe Pub-
lic be expected to determine whether a
dentist is qualified? Only if Joe Public
were a dentist would he have any hope
of making such a determination. By
requiring dental school graduates to pass
an examination prepared by dentists, the
state takes the responsibility away from
Joe Public. Further, if certified profes-
sionals do not live up to the expectations
of their peers, they could be found liable
and could lose their certification.

Like the older and more traditional
professions of accounting, medicine, and
law, the software industry is beginning
to standardize the core principles each
software professional should know.
Microsoft claims that there are greater
than 160,000 people who have become
Microsoft certified as either product
specialists, solution developers, trainers,
or systems engineers [1]. This type of
certification is “voluntary” (not required
by any official governing organization)
and expensive; however, the costs of
certification can be recouped in the first
year of working from the extra income
the certificate enables. For example, it
costs from $8,000 to $12,000 to become
a Microsoft certified systems engineer
(MCSE), and the total time to certify is
approximately six months [1]. A person
then can expect to make the same
amount in additional income compared
to a person who is not MCSE certified.

Just like doctors, lawyers, and certi-
fied public accountants, rumblings are
also being heard concerning mandatory
software engineering personnel certifica-
tion. A vote by the Texas Board of Pro-
fessional Engineers on Feb. 18, 1998
stated the board’s intention to recognize
software engineering as a legitimate
engineering discipline and stated plans
to license professional engineers in soft-
ware engineering (a complete position
statement from the Texas board can be
found at http://www.main.org/peboard/
softweng.htm). On June 17, 1998, the
Texas board gave unanimous approval to
all proposals in the statement. Beginning
July 1999, the Texas board will license
software engineers who can satisfy the
following [2]:
 • Possession of an engineering degree,

a computer science degree, or some
other high-level mathematics or

 The Software Quality Certification Triangle
Jeffrey Voas

Reliable Software Technologies

There are three distinct approaches to certifying the quality of software: accrediting
personnel, certifying the development organization, and assessing the “goodness” of the
software. These approaches, and hybrids thereof, are described, and criteria are given to
determine which approach is best, depending on the software that needs to be certified.

Figure 1. The software quality certification
triangle.

CROSSTALK The Journal of Defense Software Engineering 13November 1998

science degree that the board will
evaluate for adequacy.

• At least 16 years of creditable experi-
ence performing engineering work
(12 years for those who hold a degree
approved by the Engineering Ac-
creditation Commission of the Ac-
creditation Board for Engineering
Technology, Inc.).

• References from at least nine people,
five of whom must be licensed engi-
neers.

• Submission of documented creden-
tials as required.

After the Texas board releases the profes-
sional software engineering examination
in 1999, individuals with less experience
will be allowed to obtain a Texas Profes-
sional Engineering license by passing the
examination.

Assessing the Software Product
Generally, there are two approaches to
product-based assessment of quality:
white-box and black-box. White-box
assessment techniques include activities
such as collecting static code metrics or
measuring the degree of coverage
achieved during unit testing. Black-box
techniques include reliability testing.

White-box and black-box techniques
are not panaceas, however. For example,
because reliability is based on logical
correctness and the operational environ-
ment and not structural properties, it is
unclear what relationship a code com-
plexity metric has with the reliability of
the software. Further, it is impossible to
exhaustively test a simple program that
reads in two 32-bit integers [4].

With today’s push toward commer-
cial-off-the-shelf (COTS) software,
white-box certification techniques are
normally not used by COTS consumers.
However, white-box techniques may be
applied by vendors if they wish to do so.
Therefore, COTS consumers who are
genuinely concerned about what lurks in
the software they purchase must
decompile back to source code to apply
white-box analyses such as coverage
testing or inspections.

Most COTS licenses deem this act a
violation of the licensing agreement.
Further, pending global legislation may
weaken the ability of consumers to have

such analysis done by independent cor-
porations or consultants. In addition, a
global treaty has been presented for U.S.
approval entitled the World Intellectual
Property Organization (WIPO) Treaty.
The treaty includes language that makes
it illegal to reverse engineer software to
expose security vulnerabilities. The treaty
will make it illegal for corporations and
consulting services to conduct real-world
testing of security software. Supposedly,
research organizations will still be al-
lowed to do so, however.

President Clinton has announced his
intentions to sign the treaty, and it is
expected to pass in the U.S. House of
Representatives. The U.S. Senate has
already passed the measure that deals
with the treaty by a score of 99 to zero.
The legislation is part of a global at-
tempt to produce treaties that reduce the
amount of copyright infringement on
information technology. But the down-
side is that it disallows consumers the
right to independently certify the secu-
rity of the software they purchase (with-
out the vendor’s permission).

Certifying Processes
Because of the limitations associated
with different forms of product assess-
ment (testing as well as techniques such
as formal verification), in the mid-
1980s, the notion of “directly assessing
software quality” was dismissed as im-
plausible. This opened the door to ideas
such as “process maturity assessment”
and other indirect approaches. The most
well-known process assessment model is
the Software Engineering Institute Capa-
bility Maturity ModelSM for software.
This model and other manufacturing-
like standards rely on one premise—
good processes deliver good software.
This premise has also lead to govern-
ment regulatory standards for software
certification in avionics, medical devices,
and electric power generation. The
premise here is plausible. All developers
have to do is score themselves using a
pre-defined ranking scheme (for what is
and is not good software development
procedures), then apply that score to
their software. For example, if develop-
ment organization A is ranked higher
than organization B, it is assumed that

software from A has more quality than
software from B. The problem is that
good processes do not guarantee good
software [6]. If performed properly, good
processes merely increase the likelihood
of producing quality products; if pro-
cesses are not performed properly, the
likelihood is reduced. However, given a
fixed set of development processes, it is
still possible that organization A, that
improperly applies the set, produces
better software than organization B, that
properly applies the set. Furthermore,
this does not account for issues related to
which processes are “best.” These facts,
taken together, diminish the notion that
process assessment will become a satis-
factory substitute for product assess-
ment. Ask yourself this: Would you buy
a car without test driving it? Few would,
but this is precisely what is done when
process assessments are employed instead
of product assessment. Process assess-
ments are analogous to a car manufac-
turer that tells you what phases were
undertaken during manufacture, which
is no substitute for taking a test drive.

Software “Insurability”
I wil examine what role quality certifica-
tion can play with respect to software
insurability. Software insurability refers
to the software-induced risk that an
insurer is willing to take in exchange for
an insurance premium. The insurer is
not insuring the software but is instead
insuring the object that the software
controls. But before offering insurance
for that object, the insurer must under-
stand the worst-case scenarios that can
result if the software is defective.

Consider that Swedish insurer Trugg-
Hansa made the following exclusion
effective May 1, 1998 in the general
conditions of its business insurance
policies.

“The policy will not cover damage,
cost, legal, or other liability caused
directly or indirectly or connected
to time-related disturbance in
computer functionality.”

This demonstrates the extreme, defen-
sive posturing being seen as a result of
the year 2000 problem. But of equal
significance, it opens the door for

The Software Quality Certification Triangle

14 CROSSTALK The Journal of Defense Software Engineering November 1998

nontime-related exclusions for other
anomalous software behaviors. For ex-
ample, exclusions might someday read as
follows:

“The policy will not cover damage,
cost, legal, or other liability caused
directly or indirectly or connected
to disturbances in computer func-
tionality.”

Such a waiver enables an insurer to
avoid responsibility for all computer-
related problems. The onus is placed on
consumers to know the quality of the
computer systems they employ. Con-
sumers now bear their own liability
without access to an insurer to step in as
their surrogate in case of a mishap. This
represents a first in the software indus-
try—insurers are so concerned about
software failures that they have begun to
include exclusions in their policies.
When a situation such as this is coupled
with the WIPO Treaty and the disregard
for consumer protection that exists in
the current version of the Uniform
Commercial Code, Article 2B [3, 5], it is
clear that the need for independent
third-party certification concerning the
processes, product, and personnel could
not be greater.

Interestingly enough, a business has
been formed to address the insurability
problem—the Software Testing Assur-
ance Corporation of Stamford, Conn.
This company was founded in 1997 to
provide independent certification. Their
first certification offering will assess the
testing processes used on year-2000-
converted software. They currently cer-
tify most process assessments and a small
portion of product assessments (their
standard can be viewed at http://
www.STACorp.com/draft/
standard.htm). This independent certifi-
cation is available only to corporations
that seek business disruption insurance
in the event their computer systems fail
as a result of year 2000 software prob-

lems. The founding of this organization
opens the door for additional software
quality certification standards for infor-
mation systems when business risks are
directly tied to software quality and
insurance protection is sought.

Summary
The hypothesis that certified personnel
equates to higher quality software is easy
to disprove. The hypothesis that a more
mature process equates to higher quality
software can also be easily debunked.
Product assessment that studies the
dynamic behavior of software is clearly
the best approach to certifying software
quality, but problems that relate to feasi-
bility often reduce the ability to perform
assessments with any degree or thor-
oughness.

The best approach is to create a vari-
ety of different certification schemes
based on the different types of examina-
tions or processes used from each of the
three categories and the criticality of the
software (flight control software vs.
games). That is, aspects of each of these
three broad approaches can be combined
into a single standard. For example,
knowing that an organization has a
certain process maturity, the personnel
who developed and tested the software
were licensed, and the software received
certain forms of quality assessment
should result in greater confidence in the
software’s quality than if only one of
these facts were known. The challenge,
naturally, is how to quantify subjective
characteristics such as personnel accredi-
tation. Nonetheless, it is plausible to
develop different software quality certifi-
cation schemes that appropriately weigh
different techniques within the three
approaches with respect to the criticality
of the software.

Acknowledgments
I thank Don Bagert for his efforts to
keep me up to date on Texas’ certifica-
tion plans. u

About the Author
Jeffrey Voas is a co-
founder of and chief
scientist for Reliable
Software Technologies
and is currently the
principal investigator on
research initiatives for

the Defense Advanced Research Projects
Agency and the National Institute of
Standards and Technology. He has pub-
lished over 85 refereed journal and confer-
ence papers. He co-wrote Software Assess-
ment: Reliability, Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers, and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Voice: 703-404-9293
Fax: 703-404-9295
E-mail: jmvoas@rstcorp.com

References
1. Ayala, J., “Training the Microsoft Way,”

Windows NT Magazine, March 1998,
pp. 122-129.

2. http://www.main.org/peboard/
softweng.htm.

3. Kaner, C., “Article 2B is Fundamentally
Unfair to Mass-Market Software Cus-
tomers,” submitted to the American Law
Institute for its Article 2B review, Octo-
ber 1997.

4. Huang, J. C., “An Approach to Testing,”
ACM Computing Surveys, September
1975, pp. 113-128.

5. The American Law Institute and Na-
tional Conference of Commissioners on
Uniform Laws, Uniform Commercial
Code, Article 2B (Draft), November
1997.

6. Voas, Jeffrey, “Can Clean Pipes Produce
Dirty Water?” IEEE Software, July 1997,
pp. 93-95.

Software Quality Assurance

	Contents
	Factoring Process Improvement into the Awarding …
	of Sustainment Contracts…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Driving Quality Through Parametrics…
	Daniel D. Galorath, Lee Fischman, and Karen McRitchie…
	Galorath Incorporated, The SEER Product Developers…
	Using the Cost of Quality Approach for Software…
	Herb Krasner…
	Krasner Consulting…
	 The Software Quality Certification Triangle…
	Jeffrey Voas …
	Reliable Software Technologies…
	Smart Buying with the Federal Aviation Administration's Integrated Capability Maturity Model…
	Linda Ibrahim…
	Federal Aviation Administration…
	Need Information on…
	Software Quality Engineering?…
	Metrics for Visual Software Development Initial Research and Findings…
	Paul A. Szulewski, Mercury Computer Systems…
	Faye C. Budlong, Draper Laboratory…
	A Model to Assess Testing Process Maturity…
	Ilene Burnstein, Ariya Homyen, Robert Grom, C.R. Carlson…
	Illinois Institute of Technology…

